AQA Computer Science A-Level 4.12.1 Functional programming paradigm Concise Notes

Specification:

4.12.1.1 Function type

Know that a function, f, has a function type $f: A \rightarrow B$ (where the type is $A \rightarrow B, A$ is the argument type, and B is the result type).

Know that A is called the domain and B is called the co-domain.
Know that the domain and co-domain are always subsets of objects in some data type.

Loosely speaking, a function is a rule that, for each element in some set A of inputs, assigns an output chosen from set B, but without necessarily using every member of B. For example, f: $\{a, b, c, \ldots z\} \rightarrow$ $\{0,1,2, \ldots, 25\}$ could use the rule that maps a to $0, b$ to 1 , and so on, using all values which are members of set B.

The domain is a set from which the function's input values are chosen.

The co-domain is a set from which the function's output values are chosen. Not all of the codomain's members need to be outputs.

4.12.1.2 First-class object

Know that a function is a first-class object in functional programming languages and in imperative programming languages that support such objects.

This means that it can be an argument to another function as well as the result of a function call.

First-class objects (or values) are objects which may:

- appear in expressions
- be assigned to a variable
- be assigned as arguments
- be returned in function calls.

For example, integers, floating-point values, characters and strings are first class objects in many programming languages.

4.12.1.3 Function application

Know that function application means a function applied to its arguments.

The process of giving particular inputs to a function is called function application, for example add $(3,4)$ represents the application of the function add to integer arguments 3 and 4 . The type of the function is f : integer x integer \rightarrow integer where integer x integer is the Cartesian product of the set integer with itself. Although we would say that function f takes two arguments, in fact it takes only one argument, which is a pair, for example $(3,4)$.

4.12.1.4 Partial function application

Know what is meant by partial function application for one, two and three argument functions and be able to use the notations shown opposite. The function add takes two integers as arguments and gives an integer as a result. Viewed as follows in the partial function application scheme: add: integer \rightarrow (integer \rightarrow integer) add 4 returns a function which when applied to another integer adds 4 to that integer. The brackets may be dropped so function add becomes add: integer \rightarrow integer \rightarrow integer The function add is now viewed as taking one argument after another and returning a result of data type integer.

4.12.1.5 Composition of functions

Know what is meant by composition of functions. The operation functional composition combines two functions to get a new function. Given two functions $f: A \rightarrow B g: B \rightarrow C$ function $g \circ f$, called the composition of g and f, is a function whose domain is A and co-domain is C. If the domain and co-domains of f and g are R, and $f(x)=(x+2)$ and $g(y)=y 3$. Then $g \circ$ $f=(x+2) 3 f$ is applied first and then g is applied to the result returned by f.

Functions

- Rules that, for each element in some set A of inputs, assigns an output chosen from set B
- Does not necessarily use every member of B
- An argument is a piece of data passed to a function
- Functions are said to be applied to their arguments, creating the return value
- An argument could be a number ($0,1,3.4,-8$ e.t.c), a character ("a", "D", "!" e.t.c) or any other data type
- Functions will specify what data type is required for their arguments

Function Types

- All functions have a function type
- If f is a function, A is the input and B is the output, the function type can be defined as the following:

$$
f: A \rightarrow B
$$

- A is known as the argument type, and B is the result type
- This means function f maps A to B
- The set of inputs (A) is described as the domain
- The set of outputs (B) is called the co-domain
- The domain and co-domain are always subsets of objects in some data type

First-class objects

- Objects (or values) are objects which may:
- appear in expressions
- be assigned to a variable
- be assigned as arguments
- be returned in function calls
- Examples of first-class objects in procedural programs include integers, floating-point values, characters and strings
- In functional programming, functions are first-class objects

Function application

- A function's arguments are said to be applied to the function
- The process of giving particular input to a function is called function application

Partial function application

- Partial function application takes advantage of the inability of a function to take more than one input
- In partial function application, one of the arguments is fixed, leading to a more restricted, specialised function
- For example, the function add 23 would be broken down into the new function add 2 and the parameter 3

Composition of functions

- Function composition is the process of combining two functions to create a new function
- The user is able to use the functions both separately, and in conjunction
- Any two functions can be combined as long as the domain of one of the functions is the same as the co-domain of the other
- The symbol o indicates that two functions are being combined

